CONCEPTS OF COMPLEX FUNCTION AND LIMIT OF A COMPLEX FUNCTION

Ref: Complex Variables by James Ward Brown and Ruel V.Churchil

Dr.A.Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D. Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

Definition

- Form 1. A number of the form $x+i y, x \in R, y \in$ R is called a complex number.
- Form 2. Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to be interpreted as points in the complex plane with rectangular co-ordinates x and y.
- Example
$1+2 i=(1,2)$

Diagrammatic representation

- $z=(x, y) \in C$.
$\Rightarrow \operatorname{Re} z=x, \quad \operatorname{lm} z=y$

Operations on complex numbers

- Equality of Complex Numbers

Two complex numbers $\mathrm{z}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{z}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are equal iff $x_{1}=x_{2}, y_{1}=y_{2}$.

- Addition of Complex Numbers

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)
$$

- Multiplication

$$
\begin{aligned}
&\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}, \mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{x}_{2} \mathrm{y}_{1}\right) \\
& \cdot \mathrm{i}=(0,1) \mathrm{i}^{2}=(0,1)(0,1)=(-1,0) \\
& \therefore \mathrm{i}^{2}=-1
\end{aligned}
$$

Find the modulus of $-3+2 i$

$$
|-3+2 i|=\sqrt{4+9}=\sqrt{13}
$$

- $|z|=|x+i y|=\sqrt{x^{2}+y^{2}}$
- Equation of circle with centre at origin and radius R is $x^{2}+y^{2}=R^{2}$, that is, $|z|=R$.
- Circle with centre z_{0} radius R is $\left|z-z_{0}\right|=R$. Here z is a varying quantity.
- What is the centre and radius of the circle

$$
\begin{array}{ll}
|z-1+3 i|=2 & ? \\
\text { Radius }=2, & \quad \text { Centre }=(1,-3)
\end{array}
$$

Results

Let $x=x+i y=(x, y)$, then we have

- $\operatorname{Re} z=x, \operatorname{lm} z=y$
- $|z|^{2}=(\operatorname{Re} z)^{2}+(I m z)^{2}$
- $\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z|$
- $\operatorname{Im} z \leq|\operatorname{lm} z| \leq|z|$
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
- $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
- $\left|z_{1}+z_{2}\right|=\left|z_{1}-\left(-z_{2}\right)\right| \geq\left|z_{1}\right|-\left|z_{2}\right| \mid$

Complex Conjugates

- Form1:If $z=x+i y$ then the complex conjugate is $\bar{z}=x-i y$.
Form2:If $z=(x, y)$ then the complex conjugate is $\bar{z}=(x,-y)$, which is the reflection in the real axis of the point (x, y).
Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{i} \mathrm{y}_{1} ; \mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{i} \mathrm{y}_{2}$,
Then,
(1) $\overline{\bar{z}}=z$
(2) $|\bar{z}|=|z|=\sqrt{x^{2}+y^{2}}$
(3) $\overline{\mathrm{z}_{1} \pm \mathrm{z}_{2}}=\overline{\mathrm{z}}_{1} \pm \overline{\mathrm{z}}_{2}$
(4) $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$
(5) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{2}}{\bar{z}_{2}}, z_{2} \neq 0$
(6) $\operatorname{Re} z=\frac{z+\bar{z}}{2} ; \operatorname{Im} z=\frac{z-\bar{z}}{2 i}$
(7) $\quad Z \bar{Z}=|z|^{2}=|\bar{z}|^{2}$

Polar \& Exponential form

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

- Let $x=r \cos \theta, y=r \sin \theta$
- Then $z=r(\cos \theta+i \sin \theta)$ is the polar form and $\mathrm{z}=r e^{i \theta}$ is the exponential form.

parametric representation of a circle \&Products and Quotients in Exponential form
- The parametric representation of a circle

$$
|z|=R \text { is } z=\operatorname{Re}^{i \theta}(0 \leq \theta \leq 2 \pi)
$$

- The parametric representation of the circle

$$
\left|z-z_{0}\right|=R \text { is } z=z_{0}+\operatorname{Re}^{i \theta} \quad(0 \leq \theta \leq 2 \pi)
$$

- Products and Quotients in Exponential form

$$
\text { Suppose } \mathrm{z}_{1}=\mathrm{r}_{1} e^{i \theta_{1}}, \mathrm{z}_{2}=r_{2} e^{i \theta_{2}}, \text { then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} r e^{\left(i\left(t+\theta_{2}\right)\right.}
$$

$$
\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)}
$$

- De Moivere's Theorem $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.
That is, $\left(e^{i \theta}\right)^{n}=e^{i n \theta}, \mathrm{n} \in \mathrm{Z}$, the set of integers.
- ε-neighbourhood

An ε-neighbourhood of a given point z_{-0} in the z-plane is $\left|z-z_{0}\right|<\varepsilon$ i.e., It consists of all points z lying inside but not on a circle centered at z_{0} and with a specified positive radius ε.

- Deleted Neighbourhood

A deleted neighbourhood of z_{0} in the z-plane is $0<\left|z-z_{0}\right|<\varepsilon$.
It consists of all points z in an ε neighbourhood of z_{0} except for the point z_{0} itself.

- Interior Point

A point z_{-0} is an interior point of a set S whenever there is some neighbourhood of z_{-0} that contains only points of S.

- Exterior Point

A point z_{-0} is called an exterior point of S whenever there is some neighbourhood of z_{0} that contains no points of S.

- Boundary point:
z_{0} is a boundary of S if z_{0} is neither an interior point nor an exterior point of S. i.e., z_{0} is a boundary point of S if there is some neighbourhood of z_{0} that contains points both in S and not in S .
- Example:The circle $|z|=1$ is the boundary of $|z|<1$ and $|\mathrm{z}| \leq 1$.

Functions of a complex variable

Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each z in S a complex number w. The number w is called the value of f at z and is denoted by $f(z)$; i.e., $w=f(z)$.

Note

The set S is called the domain of the definition of f.

Example

If f is defined on the set $z \neq 0$ by means of the equation $w=\frac{1}{z}$, it may
be referred to as the function $w=\frac{1}{z}$, or simple the function $\frac{1}{z}$.
Example. $f(z)=z^{2}$ is a function.
Result. Consider a function $w=f(z)$
$z=x+i y ; w=u+i v$, where $u=u(x, y)$ and $v=v(x, y)$
i.e., u and v are real valued functions.

Example 1

$$
\begin{aligned}
& \mathbf{w}=\frac{1}{\mathrm{z}} \Rightarrow \mathbf{u}+\mathbf{i v}=\frac{1}{\mathrm{x}+\mathrm{iy}} \\
& \mathbf{u}=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}, \mathbf{v}=\frac{-\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} .
\end{aligned}
$$

Mappings

Consider the function $\mathrm{w}=\mathrm{f}(\mathrm{z})$, where $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ and $\mathrm{w}=(\mathrm{u}, \mathrm{v})$.
Properties of a real-valued function of a real variable are often exhibited by the graph of the function.

But for the function $w=f(z)$, no such convenient graphical representation of the function f is available. Because each of the numbers, z and w is located in a plane rather than on a line.

However, we can display some information about the function $w=f(z)$ by indicating pairs of corresponding points $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ and $\mathrm{w}=(\mathrm{u}, \mathrm{v})$. In diagrammatic form by drawing the z and w planes separately.

When a function f is viewed of in this way it is often referred to as mapping or transformation.

Translation

The mapping $\mathrm{w}=\mathrm{z}+1=(\mathrm{x}+1)+\mathrm{iy}$ is called a translation of each point z one unit to the right.

Rotation

$$
\begin{aligned}
& \text { We know } \mathrm{i}=\mathrm{e}^{\frac{\mathrm{i} \pi}{2}} \\
& \therefore \mathrm{w}=\mathrm{iz}=e^{\frac{i \pi}{2}} r e^{i \theta}=r e^{i\left(\theta+\frac{\pi}{2}\right)}
\end{aligned}
$$

Here $\mathrm{w}=\mathrm{iz}$ is called the rotation and it rotates the radius vector for each non-zero point z through a right angle about the origin in the counter clock wise direction.

Reflection

The mapping $\mathrm{w}=\overline{\mathrm{z}}=\mathrm{x}-$ iy transforms each point $\mathrm{z}=\mathrm{x}+$ iy into its reflection in the real axis.

Translation

The mapping $\mathrm{w}=\mathrm{z}+1=(\mathrm{x}+1)+$ iy is called a translation of each point z one unit to the right.

Rotation

$$
\begin{aligned}
& \text { We know } \mathbf{i}=\mathrm{e}^{\frac{\mathrm{i} \pi}{2}} \\
& \therefore \mathrm{w}=\mathrm{iz}=e^{\frac{i \pi}{2}} r e^{i \theta}=r e^{i\left(\theta+\frac{\pi}{2}\right)}
\end{aligned}
$$

Here $\mathrm{w}=\mathrm{iz}$ is called the rotation and it rotates the radius vector for each non-zero point z through a right angle about the origin in the counter clock wise direction.

CHAPTER 8. MAPPING BY ELEMENTARY FUNCTIONS

83. Linear transformation

Expansion or contraction and a rotation
Describe w = AZ(1)
Where A is a non zero complex constant and $z \neq 0$, we write A and z in the exponential form $A=a e^{i \alpha}$, $z=r e^{i \theta}$.

Then $w=(a r) e^{i(\alpha+\theta)}$

We see from equation (2) that transformation (1)

expands or contracts the radius vector representing Z
by the factor $a=A$ and rotates it through an angle
$\alpha=\arg$ about the origin. The image of a given region
is, therefore, geometrically similar to that region.

FIGURE 104

$$
w=(1+i) z+2 .
$$

Translation: The mapping $\mathrm{w}=\mathrm{z}+\mathrm{B}(3)$ where B is any complex constant, is a translation by means of the vector representing B. Let $w=u+i v$, $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{B}=\mathrm{b}_{1}+\mathrm{ib}{ }_{2}$. The image of any point (x, y) in the z plane is the point $(u, v)=\left(x+b_{1}, y+b_{2}\right)$ in the w plane. The image region is geometrically congruent to the original region.

Describe the linear transformation $w=A z+B$,

 $(A \neq 0)$.It is an expansion or contraction and a rotation, followed by a translation: Consider the general (non constant) linear transformation
$\mathrm{W}=\mathrm{Az}+\mathrm{B}{ }^{(A \neq 0)} \ldots \ldots \ldots \ldots \ldots .$. (5).
It is composition of $Z=A z(A \neq 0)$ and $\mathrm{w}=\mathrm{Z}+\mathrm{B}$. It is an expansion or contraction and a rotation, followed by a translation.

Example

Give a geometric description of the transformation ${ }^{\omega=(1+1)+2}$ (or) Find the image of the rectangular region with corner points $(0,0),(1,0)$, $(2,0),(1,2)$ in the z plane under the transformation $w=(1+1) z+2$ sketch the rectangle and the image.

Example

Give a geometric description of the transformation ${ }^{\omega=(1+1)+2}$ (or) Find the image of the rectangular region with corner points $(0,0),(1,0)$, $(2,0),(1,2)$ in the z plane under the transformation $w=(1+1) z+2$ sketch the rectangle and the image.

Solution

$$
w=(1+i) z+2=Z+2 \text { where } Z=(1+i) z \text {. Let } 1+\mathrm{i}=\mathrm{a}+\mathrm{ib} .
$$

Then $r=\sqrt{2}$ and $\theta=\tan ^{-1} \frac{b}{a}=\tan ^{-1} 1=\frac{\pi}{4}$.
So $1+\mathrm{i}=\sqrt{2} \exp \left(i \frac{\pi}{4}\right)$.
So $\mathrm{Z}=(1+\mathrm{i}) \mathrm{z}$ is an expansion by the factor $\sqrt{2}$ and a rotation through the angle $\frac{\pi}{4}$ and $\mathrm{w}=\mathrm{Z}+2$ is a translation of two units to the right.

FIGURE 104

$$
w=(1+i) z+2 .
$$

Limits

Consider the function $\mathrm{w}=\mathrm{f}(\mathrm{z})$. The limit of $\mathrm{f}(\mathrm{z})$ as z approaches z_{0} is a number w_{0}. ie., $\lim _{z \rightarrow z_{0}} f(Z)=W_{0}$, means that the point $w=f(z)$ can be made arbitrarily close to w_{0} if we choose the point z close enough to z_{0} but distinct from it.

Definition Consider a function $w=f(z)$. We say $\lim _{z \rightarrow z_{0}} f(Z)=W_{0}$ iff given $\varepsilon>0$, there exists $\delta>0$ such that $\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}\right|<\varepsilon$ whenever $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|$ $<\delta$.

$$
\left(0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta \Rightarrow\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}\right|<\varepsilon\right)
$$

Theorem
When a limit of a function $\mathrm{f}(\mathrm{z})$ exists at a point z_{0} it is unique.

Proof:

Suppose that $\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{W}_{0}$ and $\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{W}_{1}$

Let $\varepsilon>0$ be given (arbitrary).
Now $\lim _{z \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{W}_{0} \Rightarrow$ there exists $\delta_{0}>0$ such that

$$
\begin{equation*}
0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta_{0} \Rightarrow\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}\right|<\varepsilon \tag{1}
\end{equation*}
$$

Now, $\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{W}_{1} \Rightarrow$ there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta_{1} \Rightarrow\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{1}\right|<\varepsilon \tag{2}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{0}, \delta_{1}\right\}$.
Consider the deleted δ-neighbourhood $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta$.
Clearly if $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta$, then both (1) and (2) are true.
Now, $\left|\mathrm{w}_{1}-\mathrm{w}_{0}\right|=\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}+\mathrm{w}_{1}-\mathrm{f}(\mathrm{z})\right|$

$$
\begin{aligned}
& =\left|\left(f(z)-w_{0}\right)-\left(f(z)-w_{1}\right)\right| \\
& \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right|, \text { whenever } 0<\left|z-z_{0}\right|<\delta
\end{aligned}
$$

\therefore Given any $2 \varepsilon>0$ there exists $\delta>0$ such that

$$
0<\left|\mathrm{z}_{1}-\mathrm{z}_{0}\right|<\delta \Rightarrow\left|\mathrm{w}_{1}-\mathrm{w}_{0}\right|<2 \varepsilon
$$

Since this is true for any $2 \varepsilon>0$, we get $\left|\mathrm{w}_{1}-\mathrm{w}_{0}\right|=0 \Rightarrow \mathrm{w}_{1}-\mathrm{w}_{0}=0$.

$$
\Rightarrow \mathrm{w}_{1}=\mathrm{w}_{0} . \quad \Rightarrow \lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{w}_{0}=\mathrm{w}_{1}
$$

\therefore If the limit of a function $\mathrm{f}(\mathrm{z})$ exists at a point z_{0}, it is unique.

