CONCEPTS OF COMPLEX FUNCTION AND LIMIT OF A COMPLEX FUNCTION Ref: Complex Variables by James Ward Brown and Ruel V.Churchil

Dr.A.Lourdusamy M.Sc., M.Phil., B.Ed., Ph.D. Associate Professor Department of Mathematics St.Xavier's College(Autonomous) Palayamkottai-627002.

Definition

- Form 1. A number of the form $x + iy, x \in R, y \in R$ is called a complex number.
- Form 2. Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to be interpreted as points in the complex plane with rectangular co-ordinates x and y.
- Example

1 + 2i = (1, 2)

Diagrammatic representation

•
$$z = (x, y) \in C$$
.
 $\Rightarrow \text{Re } z = x, \text{Im } z = y$

Operations on complex numbers

• Equality of Complex Numbers

Two complex numbers $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$ are equal iff $x_1 = x_{2}, y_1 = y_2$.

Addition of Complex Numbers

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

• Multiplication

 $(x_1, y_1) (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$ • i = (0, 1) i² = (0, 1) (0, 1) = (-1, 0) \therefore i² = -1

Find the modulus of -3 + 2i

 $|-3 + 2i| = \sqrt{4+9} = \sqrt{13}$

•
$$|z| = |x + iy| = \sqrt{x^2 + y^2}$$

- Equation of circle with centre at origin and radius R is $x^2 + y^2 = R^2$, that is, |z| = R.
- **Circle** with centre z_0 radius R is $|z z_0| = R$. Here z is a varying quantity.
- What is the centre and radius of the circle
 | z 1 + 3i | = 2 ?
 Radius = 2, Centre = (1, -3)

Results

Let x = x + iy = (x, y), then we have

- Re z = x, Im z = y
- $|z|^2 = (\text{Re } z)^2 + (\text{Im } z)^2$
- Re z \leq | Re z | \leq | z |
- Im z \leq | Im z | \leq | z |
- $|z_1 + z_2| \le |z_1| + |z_2|$
- $|z_1 z_2| \ge ||z_1| |z_2||$
- $|z_1 + z_2| = |z_1 (-z_2)| \ge ||z_1| |z_2||$

Complex Conjugates

• **Form1:** If z = x + iy then the complex conjugate is $\overline{z} = x - iy$.

Form2: If z = (x, y) then the complex conjugate is $\overline{z} = (x, -y)$, which is the reflection in the real axis of the point (x, y).

Let
$$z = x + iy$$
, $z_1 = x_1 + iy_1$; $z_2 = x_2 + iy_2$,
Then,

(1)
$$\overline{\overline{z}} = z$$

(2) $|\overline{z}| = |z| = \sqrt{x^2 + y^2}$

(3) $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$ (4) $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$ (5) $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$ (6) $\operatorname{Re} z = \frac{z + \overline{z}}{2}; \operatorname{Im} z = \frac{z - \overline{z}}{2i}$ (7) $\overline{Z}\overline{Z} = |Z|^2 = |\overline{z}|^2$

Polar & Exponential form

```
• Let z = x + iy
```

- Let $x = r \cos \theta$, $y = r \sin \theta$
- Then $z = r(\cos \theta + i \sin \theta)$ is the **polar** form and $z = re^{i\theta}$ is the **exponential** form.

parametric representation of a circle & Products and Quotients in Exponential form

- The **parametric** representation of a circle |z| = R is $z = Re^{i\theta}$ ($0 \le \theta \le 2\pi$)
- The parametric representation of the circle

$$|z - z_0| = R \text{ is } z = z_0 + Re^{i\theta} \quad (0 \le \theta \le 2\pi)$$

• Products and Quotients in Exponential form Suppose $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$, then $z_1 z_2 = r_1 r_2 r e^{i(\theta_1 + \theta_2)}$ $\frac{Z_1}{2} = \frac{r_1}{2} e^{i(\theta_1 + \theta_2)}$

$$\mathbf{z}_2 \mathbf{r}_2$$

• De Moivere's Theorem

 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$

That is, $(e^{i\theta})^n = e^{in\theta}$, $n \in Z$, the set of integers.

• ϵ - neighbourhood

An ε -neighbourhood of a given point z_{-0} in the z-plane is $|z - z_0| < \varepsilon$ i.e., It consists of all points z lying inside but not on a circle centered at z_0 and with a specified positive radius ε .

Deleted Neighbourhood

A deleted neighbourhood of z_0 in the z-plane is $0 < |z - z_0| < \varepsilon$.

It consists of all points z in an ε neighbourhood of z_0 except for the point z_0 itself.

• Interior Point

A point z_{-0} is an interior point of a set S whenever there is some neighbourhood of z_{-0} that contains only points of S.

• Exterior Point

A point z_{-0} is called an exterior point of S whenever there is some neighbourhood of z_0 that contains no points of S.

• Boundary point:

 z_0 is a boundary of S if z_0 is neither an interior point nor an exterior point of S. i.e., z_0 is a boundary point of S if there is some neighbourhood of z_0 that contains points both in S and not in S.

• **Example:** The circle |z| = 1 is the boundary of |z| < 1 and $|z| \le 1$.

Functions of a complex variable

Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each z in S a complex number w. The number w is called the value of f at z and is denoted by f(z); i.e., w = f(z).

Note

The set S is called the domain of the definition of f.

Example

If f is defined on the set $z \neq 0$ by means of the equation $w = \frac{1}{z}$, it may be referred to as the function $w = \frac{1}{z}$, or simple the function $\frac{1}{z}$. **Example.** $f(z) = z^2$ is a function.

Result. Consider a function w = f(z)

$$z = x + iy$$
; $w = u + iv$, where $u = u(x, y)$ and $v = v(x, y)$

i.e., u and v are real valued functions.

Example 1

$$\mathbf{w} = \frac{1}{z} \implies \mathbf{u} + \mathbf{i}\mathbf{v} = \frac{1}{x + \mathbf{i}y}$$
$$\mathbf{u} = \frac{x}{x^2 + y^2}, \ \mathbf{v} = \frac{-y}{x^2 + y^2}.$$

Mappings

Consider the function w = f(z), where z = (x, y) and w = (u, v).

Properties of a real-valued function of a real variable are often exhibited by the graph of the function.

But for the function w = f(z), no such convenient graphical representation of the function f is available. Because each of the numbers, z and w is located in a plane rather than on a line.

However, we can display some information about the function w=f(z)by indicating pairs of corresponding points z = (x, y) and w = (u, v). In diagrammatic form by drawing the z and w planes separately.

When a function f is viewed of in this way it is often referred to as mapping or transformation.

Translation

The mapping w = z + 1 = (x + 1) + iy is called a translation of each point z one unit to the right.

Rotation

We know
$$\mathbf{i} = \mathbf{e}^{\frac{1\pi}{2}}$$

$$\therefore \mathbf{w} = \mathbf{i}_{\mathbf{Z}} = e^{\frac{i\pi}{2}} r e^{i\theta} = r e^{i\left(\theta + \frac{\pi}{2}\right)}$$

Here w = iz is called the rotation and it rotates the radius vector for each non-zero point z through a right angle about the origin in the counter clock wise direction.

Reflection

The mapping $w = \overline{z} = x - iy$ transforms each point z = x + iy into its reflection in the real axis.

Translation

The mapping w = z + 1 = (x + 1) + iy is called a translation of each point z one unit to the right.

Rotation

We know
$$\mathbf{i} = \mathbf{e}^{\frac{\mathbf{i}\pi}{2}}$$

$$\therefore \mathbf{w} = \mathbf{i}_{\mathbf{Z}} = e^{\frac{i\pi}{2}} r e^{i\theta} = r e^{i\left(\theta + \frac{\pi}{2}\right)}$$

Here w = iz is called the rotation and it rotates the radius vector for each non-zero point z through a right angle about the origin in the counter clock wise direction.

CHAPTER 8. MAPPING BY ELEMENTARY FUNCTIONS

83. Linear transformation

Expansion or contraction and a rotation

Describe w = AZ(1)

Where A is a non zero complex constant and $z \neq 0$, we write A and z in the exponential form $A = ae^{i\alpha}$, $z = re^{i\theta}$.

Then $w = (ar)e^{i(\alpha+\theta)}$ (2)

We see from equation (2) that transformation (1) expands or contracts the radius vector representing z by the factor $\alpha = 4$ and rotates it through an angle $\alpha = \arg^{a}$ about the origin. The image of a given region is, therefore, geometrically similar to that region.

.

Translation: The mapping w = z+B....(3)where B is any complex constant, is a translation by means of the vector representing B. Let w= u+iv, z=x+iy, $B=b_1+ib_2$. The image of any point (x, y) in the z plane is the point $(u, v) = (x+b_1, y+b_2)$ in the w plane. The image region is geometrically congruent to the original region.

Describe the linear transformation w = Az+B, $(A \neq 0)$.

It is an expansion or contraction and a rotation, followed by a translation: Consider the general (non constant) linear transformation

W= Az+B $(A \neq 0)$ (5).

It is composition of $Z = Az(A \neq 0)$ and w= Z+B. It is an expansion or contraction and a rotation, followed by a translation.

Example

Give a geometric description of the transformation w=(1+i)z+2 (or) Find the image of the rectangular region with corner points (0,0), (1,0), (2,0), (1,2) in the z plane under the transformation w=(1+i)z+2 sketch the rectangle and the image.

Example

Give a geometric description of the transformation w=(1+i)z+2 (or) Find the image of the rectangular region with corner points (0,0), (1,0), (2,0), (1,2) in the z plane under the transformation w=(1+i)z+2 sketch the rectangle and the image.

Solution

w=(1+i)z+2=Z+2 where Z=(1+i)z. Let 1+i = a+ib. Then $r=\sqrt{2}$ and $\theta=\tan^{-1}\frac{b}{a}=\tan^{-1}1=\frac{\pi}{4}$. So $1+i=\sqrt{2} \exp \left(i\frac{\pi}{4}\right)$. So Z=(1+i) z is an expansion by the factor $\sqrt{2}$ and a rotation through the angle $\frac{\pi}{4}$ and w=Z+2 is a translation of two units to the right.

.

Limits

Consider the function w = f(z). The limit of f(z) as z approaches z_0 is

a number w₀. ie., $\lim_{z \to z_0} f(z) = W_0$, means that the point w = f(z) can be made arbitrarily close to w₀ if we choose the point z close enough to z₀ but distinct from it.

Definition Consider a function w = f(z). We say $\lim_{z \to z_0} f(z) = W_0$ iff

given $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(z) - w_0| < \varepsilon$ whenever $0 < |z - z_0| < \delta$.

$$(0 < |z - z_0| < \delta \Longrightarrow |f(z) - w_0| < \varepsilon)$$

Theorem

When a limit of a function f(z) exists at a point z_0 it is unique. **Proof:**

Suppose that
$$\lim_{z \to z_0} f(z) = W_0$$
 and $\lim_{z \to z_0} f(z) = W_1$

Let $\varepsilon > 0$ be given (arbitrary).

Now
$$\lim_{z \to z_0} f(z) = W_0 \Rightarrow$$
 there exists $\delta_0 > 0$ such that
 $0 < |z - z_0| < \delta_0 \Rightarrow |f(z) - w_0| < \varepsilon$... (1)
Now, $\lim_{z \to z_0} f(z) = W_1 \Rightarrow$ there exists $\delta_1 > 0$ such that
 $0 < |z - z_0| < \delta_1 \Rightarrow |f(z) - w_1| < \varepsilon$...(2)

Let $\delta = \min \{\delta_0, \delta_1\}$.

Consider the deleted δ -neighbourhood $0 < |z - z_0| < \delta$.

Clearly if $0 \le |z - z_0| \le \delta$, then both (1) and (2) are true.

Now,
$$|w_1 - w_0| = |f(z) - w_0 + w_1 - f(z)|$$

= $|(f(z) - w_0) - (f(z) - w_1)|$
 $\leq |f(z) - w_0| + |f(z) - w_1|$, whenever $0 < |z - z_0| < \delta$.

 \therefore Given any $2\varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < |z_1 - z_0| < \delta \Longrightarrow |w_1 - w_0| < 2\varepsilon.$$

Since this is true for any $2\varepsilon > 0$, we get $|w_1 - w_0| = 0 \Rightarrow w_1 - w_0 = 0$.

$$\Rightarrow w_1 = w_0. \Rightarrow \lim_{z \to z_0} f(z) = w_0 = w_1$$

 \therefore If the limit of a function f(z) exists at a point z_0 , it is unique.